In this paper we prove an analogue in the discrete setting of \Bbb Z^d, ofthe spherical maximal theorem for \Bbb R^d. The methods used are two-fold: theapplication of certain "sampling" techniques, and ideas arising in the study ofthe number of representations of an integer as a sum of d squares inparticular, the "circle method". The results we obtained are by necessitylimited to d \ge 5, and moreover the range of p for the L^p estimates differsfrom its analogue in \Bbb R^d.
展开▼
机译:在本文中,我们证明了\ Bbb Z ^ d的离散设置中\ Bbb R ^ d的球面最大定理的类似物。所使用的方法有两个方面:某些“采样”技术的应用,以及在研究整数表示形式(尤其是d平方和)时所产生的思想,即“圆法”。我们获得的结果必然限于d \ ge 5,而且L ^ p估计值的p范围不同于\ Bbb R ^ d中的类似值。
展开▼